Propiedades de los números reales
El conjunto de los números reales es la unión de los números racionales y los irracionales. Su representación es mediante una recta real (recta numérica). Podemos definir los números reales de la siguiente manera:
R = { x | x es un punto en una recta}
Si dibujamos una recta cada punto representa un número real.
- Reconocer las propiedades de los números reales
- Resolver operaciones utilizando las propiedades de los números reales
Propiedades de los números reales Mat 101.pdf Download Propiedades de los números reales Mat 101.pdf
Properties of operations quiz Links to an external site.
Properties of numbers worksheet Links to an external site.
Properties of addition and multiplication Links to an external site.
Propiedad asociativa ejercicios Links to an external site.
Ejercicios de valor absoluto Links to an external site.
Ejercicios del libro:
Section 1.3 Exercises
Practice Makes Perfect
Use Negatives and Opposites of Integers
In the following exercises, order each of the following pairs of numbers, using < or >.
ⓐ −7___3
ⓑ −10___−5
ⓒ 2___−6
ⓓ 8___9
In the following exercises, find the opposite of each number.
ⓐ 9ⓑ −4
In the following exercises, simplify.
−(−8)
−(−11)
In the following exercises, evaluate.
−d when
ⓐ d=21
ⓑ d=−21
Simplify Expressions with Absolute Value
In the following exercises, simplify.
ⓐ |0|
ⓑ |−40|ⓒ |22|
In the following exercises, fill in <, >, or = for each of the following pairs of numbers.
ⓐ |−5|___−|−5|ⓑ 9___−|−9|
In the following exercises, simplify.
−|−9|and−(−9)
5|−5|
|17−8|−|13−4|
18−|3(8−5)|
In the following exercises, evaluate.
ⓐ −|a|whena=60
ⓑ −|b|whenb=−12
Add Integers
In the following exercises, simplify each expression.
−35+(−47)
34+(−19)
−17+(−18)+6
−38+27+(−8)+12
24+3(−5+9)
Subtract Integers
In the following exercises, simplify.
−6−(−4)
−7−2
7−(−3)
ⓐ 35−16ⓑ 35+(−16)
ⓐ 46−(−37)ⓑ 46+37
In the following exercises, simplify each expression.
14−(−11)
45−69
−19−46
−105−(−68)
−58−(−67)
9−6−5
−3−8+4
64+(−17)−9
(1−8)−(2−9)
−(4−5)−(7−8)
32−[5−(15−20)]
5⋅7−8⋅2−4⋅9